Run t-SNE dimensionality reduction method on the assay data.
getTSNE(
inSCE,
useAssay = "logcounts",
reducedDimName = "TSNE",
n_iterations = 1000,
perplexity = NULL,
run_pca = TRUE
)
Input SCtkExperiment object. Required
Indicate which assay to use. The default is "logcounts".
a name to store the results of the dimension reductions
maximum iterations. Default is 1000
perplexity parameter.
run tSNE on PCA components? Default is TRUE.
A SCtkE object with the specified reducedDim and pcaVariances updated
data("mouseBrainSubsetSCE")
#add a CPM assay
assay(mouseBrainSubsetSCE, "cpm") <- apply(
assay(mouseBrainSubsetSCE, "counts"), 2, function(x) {
x / (sum(x) / 1000000)
})
mouseBrainSubsetSCE <- getTSNE(mouseBrainSubsetSCE, useAssay = "cpm",
reducedDimName = "TSNE_cpm")
reducedDims(mouseBrainSubsetSCE)
#> List of length 5
#> names(5): PCA_counts PCA_logcounts TSNE_counts TSNE_logcounts TSNE_cpm